
New Techniques for Parallel Simulation of High-TemperatureSuperconductorsLori Freitag Mark Jones Paul PlassmannMCS Division Computer Science Department MCS DivisionArgonne National Lab. University of Tennessee Argonne National Lab.Argonne, IL 60439 Knoxville, TN 37996 Argonne, IL 60439AbstractIn this paper we discuss several new techniques usedfor the simulation of high-temperature superconductorson parallel computers. We introduce an innovativemethodology to study the e�ects of temperature 
uctu-ations on the vortex lattice con�guration of these ma-terials. We have found that the use of uniform orthog-onal meshes results in several limitations. To addressthese limitations, we consider nonorthogonal meshesand describe a new discrete formulation that solves thedi�cult problem of maintaining gauge invariance onnonorthogonal meshes. With this discretization, adap-tive re�nement strategies are used to concentrate gridpoints where error contributions are large (in this case,near vortex cores). We describe the algorithm used forthe parallel implementation of this re�nement strategy,and we present computational results obtained on theIntel DELTA.1 IntroductionHigh-temperature superconductors have the poten-tial to be used in a wide variety of industrial appli-cations including generators and motors, energy stor-age, and magnetically levitating trains. One of themost interesting properties of these superconductors isthat they allow normal and superconducting regionsto coexist in the same sample. Discrete packets ofexternal magnetic 
ux penetrate the sample, causingpenetration regions to have the properties of a normalconductor. The rest of the superconducting sample isprotected from these normal regions through the for-mation of vortices of superconducting electrons. It iswell known that the vortices arrange themselves in ahexagonal lattice pattern to minimize the free energyin the sample when the temperature is below a criti-cal temperature, Tc. Using the standard discretizationscheme on an orthogonal mesh, we have successfully

modeled vortex lattice structure in three-dimensionalsuperconducting materials for temperatures T < Tc.On the Intel DELTA, this approach obtained sustainedcomputational rates of 4.26 giga
ops with 512 proces-sors [6].A problem of more current interest to physicistsis the study of the e�ect of temperature 
uctuations,T > Tc, on the vortex lattice con�guration and struc-ture. We have developed a new methodology forstudying these e�ects that uses derivative informationalready calculated in the minimization of the free en-ergy. We have been successful in isolating the charac-teristic energies of the sample, but found that the useof uniform, orthogonal meshes results in several lim-itations, including restrictive problem sizes and sym-metry constraints.We may circumvent these problems by using adap-tive mesh re�nement on nonorthogonal meshes. Totake advantage of the computing power and largememory capacity of state-of-the-art distributed mem-ory architectures, we have developed the algorithmsand software necessary to perform adaptive re�nementon parallel computers [4]. We re�ne elements of themesh according to proximity to the vortex core. In thisway, grid points are concentrated where the solutionchanges rapidly and are relatively sparsely placed inareas where the solution is essentially constant. Thusfewer total mesh points are used without compromis-ing accuracy in the modeling of vortex core structure.Although this approach is e�cient in its use of meshpoints, the resulting discretized problem is both un-structured and dynamic. In order to achieve goodload balancing and performance on parallel comput-ers, the dynamic mesh must be partitioned (an as-signment of unknowns and elements to processors) af-ter each modi�cation. We have developed a new geo-metric partitioning algorithm that strives to minimizeboth latency and transmission communication costson distributed memory architectures.



An additional consideration when using nonorthog-onal meshes for this problem is that standard approx-imation techniques fail to maintain a discrete form ofthe gauge invariance found in the continuous model.Therefore, we have developed a new discretizationscheme that maintains gauge invariance on nonorthog-onal meshes. We use asymptotic analysis to show thatthe free energy obtained using this approach convergesto the same value obtained when using standard dis-cretization techniques on orthogonal meshes.The remainder of the paper is organized as fol-lows. First we describe the equations used to modelsuperconducting materials and present the methodol-ogy used to incorporate the e�ects of temperature intothe model. We then give the new discrete formulationof the problem appropriate for use on nonorthogonalmeshes. This discretization is used in conjunction withadaptive mesh re�nement to reduce the total num-ber of grid points required to model the vortex latticestructure. We describe the parallel implementationof the adaptive mesh re�nement and partitioning al-gorithms. Finally, we present computational resultsthat show the e�ciency of the adaptive mesh algo-rithms within the framework of the superconductivityproblem on the Intel DELTA.2 High-temperature superconductorsWe use the highly successful Ginzburg-Landauequations to model the vortex con�gurations in high-temperature superconductors. An e�ective approachto solving these equations numerically is a dampedNewton's method. This method requires the compu-tation of derivative information, which we use to in-corporate the e�ects of temperature into the model.2.1 Numerical modelTo study the internal structures and lattice con�g-urations of the vortices for temperatures T < Tc, weminimize the nondimensionalized Ginzburg-Landaufree energy functional. The total free energy over thevolume 
 is given byF (u) = F ( ;A) = (1)Fcond( ) + Fkin( ;A) + F
d(A): (2)These three terms are generally known as the conden-sation, kinetic, and �eld energy terms and are givenby the formulaeFcond = Z
�j j2 + 12 j j4d
; (3)

Fkin = Z
 j (r+ iA) j2d
; (4)F
d = Z
 �2jr�Aj2d
: (5)The variable  is the complex-valued order parameterand A is the vector potential. The physical quantitiesof interest are j j2, the local density of superconduct-ing electron pairs, and B = r�A, the magnetic �eldinduced by the motion of the electron pairs throughthe sample. The parameter � gives the ratio of the thecharacteristic length over which j j2 varies (the cor-relation length, �), to the characteristic length overwhich B varies (the penetration depth, �).An important property of this free energy func-tional is that its value is unchanged by a gauge trans-formation. That is, given ( ;A) and any scalar func-tion �, we �nd that the pair ( 0;A0) given by 0 =  ei� A0 = A �r�leaves the free energy invariant. Thus, there are an in-�nite number of solutions to the optimization problem,which complicates the computation of a minimizer.We have found that an e�ective approach to com-puting a minimizer u� = ( �;A�) of the discretizedfree energy functional is a damped Newton's method.Each step of Newton's method requires computationof the gradient vector, rF , and Hessian matrix,r2F .These terms are used to compute a correction term,si, in the following manner:(r2F + 
iI)si = �rFui+1 = ui + �isi;where �i is computed by a line search. As a resultof the gauge symmetries of the problem, the Hessianis highly singular at the solution (approximately one-fourth of the eigenvalues are zero in two dimensions),and we include the damping term, 
i, to improve theconvergence of the method as described in Garner etal. [3]. The computational kernel of this technique isthe solution of the damped Newton system|a large,sparse linear system of equations. We do not explicitlyinvert this system but use an iterative solver to obtainan approximate (inexact) solution to the Newton sys-tem. The BlockSolve package developed at ArgonneNational Laboratory by Mark Jones and Paul Plass-mann [5] is used for this purpose.2.2 Fluctuation calculationsGiven that one can compute minimizers of the freeenergy functional using a Newton iteration, we note2



that it is possible to incorporate the e�ects of tempera-ture into the model. Temperature 
uctuations aroundthe critical temperature, Tc, of a superconducting ma-terial cause the vortices to move and vibrate aroundthe equilibrium hexagonal vortex con�guration. If thetemperature is high enough, the hexagonal structureis lost as the vortex lattice melts and vortices movefreely in the superconducting sample. In this case,the value of the free energy functional is now depen-dent on u and T and is incorporated in the followingway F(u; T ) = �T ln(Z); (6)Z = Z D[u(r)]e�F(u)T ; (7)where the partition function, Z, is the integral overall possible vortex con�gurations in the sample mul-tiplied by the probability that each con�guration willoccur. This probability is a function of F (u) and T ,where F (u) is the Ginzburg-Landau functional eval-uated at the perturbed con�guration u. It is impor-tant to note that the negative sign in the exponentialterm shows that the higher the free energy value ofthe con�guration, the less likely it is to occur. Thatis, the most likely con�gurations will be those that re-sult from small perturbations around the equilibriumlattice. Hence, in this paper we consider small pertur-bations of T around Tc.Traditionally the partition function, Z, is found nu-merically by using Monte Carlo techniques, which re-quire millions of evaluations of F . For the problemsizes considered here, each evaluation of F requiresseveral minutes, so that the use of Monte Carlo tech-niques results in a computationally intractable prob-lem. Instead, we use the fact that the value of the freeenergy functional for small perturbations, pi, is givenby the Taylor expansionF (u� + pi) = F (u�) +rFpi+ pTi r2Fpi + � � � ; (8)where F (u�) is the minimum free energy of (2)-(5)at T � Tc, the linear term is zero since u� is theoptimal con�guration, and r2F is the Hessian of theenergy functional evaluated at u�. If we choose pito be the orthonormal eigenvectors of the Hessian, vi,the expansion in (8) reduces to a sum of the associatedeigenvalues �iF (u� + �vi) = F (u�) + �2�i + O(�3) + � � � : (9)Thus, the calculation of the free energy value for smallperturbations is reduced to spectral analysis of the
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Figure 1: Asymptotic results for the smallest fournonzero eigenvalues of a single vortex superconduc-tivity sampleHessian which must be performed only once. Al-though this is still a computationally intensive oper-ation, it is tractable for the current high-performancecomputing architectures.We start with an orthogonal mesh and use the stan-dard �nite di�erence discretization of the free energyfunctional (2){(5) (see, for example, [3]). To �nd thecharacteristic energies that most a�ect the partitionfunction evaluation for a sample containing two vor-tices, we use asymptotic analysis. The results for thesmallest four nonzero eigenvalues are shown in Fig-ure 1. These are the smallest nonzero eigenvalues ofthe Hessian associated with each problem size. Wesee that the eigenvalues asymptotically approach val-ues independent of h. In particular, the four smallestnonzero eigenvalues of this problem are�1 = .020857111,�2 = .432188615,�3 = .772728681,�4 = 3.55252043.Note that the eigenvalues increase several orders ofmagnitude rapidly. Thus, only a few of the smallesteigenvalues contribute signi�cantly to the approxima-tion of the partition function.3



To eliminate the error associated with the discretenature of the numerical approximation, we must plotand parameterize the phonon dispersion curves. Thesecurves give the in�nite wavelength response to temper-ature 
uctuations and are critical to �nding an accu-rate representation of the partition function, Z. How-ever, to obtain even four points on the phonon disper-sion curves requires solution of a sample containing256 vortices. Problems of this size using orthogonalmeshes require billions of grid points to adequatelyresolve vortex structure and remain computationallyintractable.3 Adaptive mesh re�nementTo address the limitations of using an orthogonalmesh, we use adaptive mesh re�nement to concen-trate grid points around vortex cores. In this way,the total number of grid points is reduced. We usenonorthogonal meshes and introduce a new discreteformulation which maintains a discrete form of gaugeinvariance on these meshes. With this discretization,adaptive re�nement strategies are used to concentrategrid points where error contributions are large (in thiscase, near vortex cores). We describe the algorithmused for the parallel implementation of this re�ne-ment strategy, and we present computational resultsobtained on the Intel DELTA.3.1 Nonorthogonal discrete formulationWe would like to signi�cantly reduce the total num-ber of grid points required to obtain an accurate repre-sentation of the lattice con�guration. This reductionwould in turn allow us to study the problem sizes ofinterest in 
uctuation calculations. To do this, we con-centrate mesh grid points near the vortex core (wherethe solution changes rapidly) and use relatively fewgrid points far from the vortex cores.On orthogonal meshes, nonuniform grid point spac-ing requires that constraints be placed at nonconform-ing nodes (nodes that lie on the edge of an element,but are not a corner vertex). These constraints unnec-essarily increase the work required to solve the systemand complicate implementation. Therefore, we chooseto use nonorthogonal, simplicial meshes. The questionnow arises as to whether standard discretization tech-niques maintain the important property of discretegauge invariance on these nonorthogonal meshes. Weintroduce the following de�nition which gives the re-quirements for a discretization to be considered gaugeinvariant.

De�nition 1 Let � and �A be the discrete representa-tions of  and A. In addition, let �F be a discrete for-mulation of the free energy functional, and let �� be anyscalars de�ned on the same grid points as � . Considerthe transformation � 0 = � ei��. We de�ne discretegauge invariance to be a property of the discretizationscheme that allows for a corresponding transformationof �A to some �A0 such that �F ( � 0; �A0) = �F ( � ; �A).We found that the standard �nite-di�erence and�nite-element approximation techniques do not main-tain gauge invariance on nonorthogonal meshes as de-�ned above (see [2]). Therefore, we have developeda new discrete formulation for use on nonorthogonalmeshes that ensures that a discrete version of gaugeinvariance is preserved. The unknowns of the new for-mulation are a; b; and the phase, �, where� = Z A �Tdsis associated with the links between the grid pointsandT is the unit tangent vector such that n�T alwayspoints into the domain. Let the vertices of a typicaltriangle in the mesh be v1; v2; and v3 and the linksopposite each vertex be l1; l2; and l3. Let the area ofthe triangle be A4 and the area of the entire domainbe A
. We give the discretization of each of the threeterms in Equation (2) that ensures that the conditionsof De�nition 1 are satis�ed.The condensation energy density in Equation (3) isevaluated at the vertices of the triangle and averagedto obtain a value for the entire element:�Fcond = A43A
 3Xi=1 ��(a(vi)2 + b(vi)2)+12(a(vi)2 + b(vi)2)2� : (10)For the �eld energy density (5), we use Green's the-orem to obtainF
d = Z4 �2jr�Aj2d4 = I@4 �2jA �Tj2ds:The discrete representation of this equation using the�eld variable � is�F
d = 1A4A
  � 3Xi=1 �(li)!2 : (11)The kinetic energy density (4) is calculated at eachvertex in the triangle, and the average of these val-ues is used to represent the energy of the element.4



To maintain gauge invariance, we use a link variableformulation similar to that used in the standard �nite-di�erence discretization. First, we rotate the elementso that all values of the order parameter are in thesame gauge basis. That is, ̂(v2) =  (v2)e�i�(l3);  ̂(v3) =  (v3)e�i(�(l3)+�(l1)); ̂(v1) =  (v1)e�i(�(l3)+�(l1)+(l2)):In this case the gauge invariant di�erences along eachlink are given byK1 =  ̂(v3)�  ̂(v2); K2 =  ̂(v1)�  ̂(v3);K3 =  ̂(v2) �  (v1):The contribution to the kinetic term at the vertex v1is then K(v1) = K22 l23 +K23 l22 + 2l2 � l3K2K�3 :The cross term 2l2 �l3K2K�3 is not required for orthog-onal meshes but is incorporated here to adjust for thenonorthogonality of the triangle sides. Similar termsfor the other two vertices are summed to give the ki-netic energy for the element,�Fkin = 112 A4A
 3Xi=1K(vi): (12)To validate the new formulation, we used asymp-totic analysis on a sample containing two vortices with� = 5 to show the validity of the new discrete model.The results obtained on uniform, orthogonal meshesusing �nite di�erences were compared with those ob-tained on uniform triangular meshes using the newdiscrete formulation. As the element area O(h2) ap-proaches zero, we see in Figure 2 that condensation, ki-netic, and total free-energy terms converge linearly tothe same result. The methods approach the solutionfrom di�erent directions: �nite di�erences from be-low for the condensation and total free-energy terms,the new formulation from above and vice versa for thekinetic term. The kinetic energy is highest aroundthe vortex core, which, for the new element technique,may be located anywhere in the element, not just atgrid points, as is the case in �nite di�erences. In thiscase the gradient term in Fkin is not well approxi-mated, and the kinetic energy term is always under-estimated.
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relative asym free energy difference = -2.012135e-11Figure 2: Asymptotic results for the condensation, ki-netic terms and �nal free-energy value3.2 Parallel implementationWith the new discrete formulation, we may useadaptive mesh re�nement on simplicial meshes to con-centrate grid points where error contributions arelarge. In this case, the adaptive mesh tracks vortexdevelopment and movement. In any simulation us-ing adaptive mesh re�nement techniques, maintainingmesh quality is a primary concern. As the minimumangle of the mesh decreases, the condition number ofthe linear system grows, making solution more dif-�cult. As the maximum �nal angle of the mesh ap-proaches �, the interpolation error in the approximatesolution increases.One re�nement technique that guarantees meshquality is the bisection algorithm of Rivara [8]. In5



this algorithm, a triangle marked for re�nement is di-vided by connecting the midpoint of the longest sideto the opposite vertex. This approach creates a non-conforming point in a neighboring triangle, and the re-�nement is propagated until all nonconforming pointsare removed from the mesh (see Figure 3 for an illus-tration). The algorithm guarantees that mesh anglesare bounded away from 0 and � if the angles in theinitial mesh are. In particular, the smallest angle ofthe k� th mesh, �kmin, is greater than or equal to one-half of the smallest angle in the initial mesh �0min [9].Using this result, we may also choose to bisect a tri-angle selectively across a smaller side if the resultingangles are greater than 12�0min and still maintain meshquality.Figure 3: Propagation within the bisection algorithmTo implement the bisection algorithm on medium-grain parallel architectures such as the Intel DELTA orIBM SP1, we partition the vertices of the initial meshacross the processors, as illustrated in Figure 4. Parti-tion boundaries are indicated by dashed lines, and thevertices and triangles owned by the center processorare indicated by the black dots and shaded triangles.In addition, each processor stores the nearest neigh-bor information, indicated by clear dots and trianglesin the �gure. Note that any given triangle is ownedby only one processor even though the vertices asso-ciated with that triangle may be partitioned acrossprocessor boundaries. A processor owns a triangle ifit owns two or more of the vertices of the triangle. Ifall of the vertices of a triangle are owned by di�erentprocessors, triangle ownership is determined by a tie-breaking procedure. Any vertex or triangle created inthe re�nement procedure is owned by the processorthat created it.Synchronization in the parallel re�nement algo-rithm must be managed so that there is a uniqueglobal list of vertices and element neighbor informa-tion is correct across the processors. To ensure thatthese conditions are satis�ed, we re�ne independentsets of triangles in parallel. We de�ne the indepen-dent sets in the context of the dual graph of the mesh,where the dual graph is de�ned to be D = (T; F ),where T is the set of triangles in the mesh and F isthe set of links that connect two triangles if they sharea common edge. We say that a triangle, ti, is in theindependent set, Ik, if for every neighboring triangle

Figure 4: Partitioning of vertices and triangles acrossprocessorstj 2 D1. tj is not marked for re�nement,2. tj is owned by the same processor as ti, and3. �(tj) < �(ti),where �(t) is a random number assigned to the trian-gle at its creation. We note that �nding Ik requiresno communication, since each processor stores the tri-angle neighbor information.Using independent sets, we now describe an algo-rithm that avoids the synchronization problems men-tioned above and has a provably good run time (for acomplete description of this algorithm see [4]).k = 0Based on local error estimates, let Q0 be theset of triangles initially marked for re�nementWhile Qk 6= doChoose Ik 2 D from QkSimultaneously re�ne the triangles in IkDistribute updated element informationk = k + 1Qk is the set of new nonconforming trianglesQk = Qk [ (Qk�1 � Ik�1)EndwhileThe only communication required in this algorithm isthe distribution of updated element information to theprocessors and the global reduction required to checkwhether Qk is empty.As grid points are dynamically added and deletedin the mesh, we must determine good partitionings ofthe mesh for distributed-memory architectures. Wede�ne a good partition to be one in which the gridpoints are evenly distributed to the processors in sucha way that interprocessor communication costs areminimized. To reduce communication costs, we mustminimize the number of processor neighbors in thepartition and the number links crossing the partitionboundary. For uniform meshes, a good partitioning6



of grid points may be determined a priori by the ge-ometric domain. For unstructured adaptive meshes,however, the partitioning cannot be predetermined be-cause it changes with each new re�nement of the mesh.Several interesting techniques may be used to deter-mine the partitioning of an unstructured mesh. Spec-tral methods (see [7], for example) have the advantageof global access to information about the graph to �ndgood separators at the cost of eigenvalue/eigenvectorcomputation. Although the eigenvectors generally donot need to be found to much accuracy, spectral meth-ods fail to utilize the geometric information knownabout the vertices of the mesh.Geometric information is used in bisection parti-tioning algorithms such as the orthogonal recursive bi-section (ORB) algorithm [1]. This algorithmmakes aninitial cut to divide the grid points in half. Orthogonalcuts are then made recursively in the new subdomainsuntil the grid points are evenly distributed among theprocessors. Although this algorithm obtains good loadbalancing and is inexpensive to compute, it ignoresthe communicationminimization problem. Long, thinpartitions may be created that have a high ratio oflinks crossing the partition boundaries to total num-ber of links in the partition.To address this problem, we have developed a mod-i�cation of ORB which we call the unbalanced recur-sive bisection (URB) algorithm. Instead of dividingthe unknowns in half, we choose the cut that mini-mizes partition aspect ratio and divides the unknownsinto nkP and n(P�k)P sized groups, where n is the totalnumber of unknowns, P is the number of processors,and k 2 f1; 2; :::; P � 1g. This algorithm leads to aneven distribution of grid points with more balancedpartition aspect ratios. This tends to minimize thecommunication costs in two ways. First, and mostimportant, partitions with good aspect ratios (closeto one) tend to have fewer partition neighbors andhence fewer messages to send. Second, the percent-age of mesh links crossing the partition boundary tothe total number of links in the nearly square parti-tions is small compared with the long, thin partitionsgenerated by the ORB algorithm. Thus, the ratio ofcomputation to communication is increased comparedwith the ORB algorithm,while execution time to com-pute the partition is signi�cantly less than for spectraltechniques.

4 Computational resultsTo adaptively re�ne the mesh around vortex coresingularities, we used the following re�nement rule: atriangle, tj, is re�ned ifmin (j (vi)j2 �A4) < �T ;where the �T is a user-de�ned tolerance. The newvalues of a and b are obtained by linear interpolation atthe new grid point. The new phase, �new, is chosen sothat the magnetic 
ux density in the two new trianglesis equal to the original 
ux density.We now demonstrate the e�ciency and scalabilityof the re�nement and partitioning algorithms withinthe framework of the superconductivity problem. Be-cause the current implementation of the adaptive re-�nement algorithms allows data to be associated withvertices only, we have used a preliminary formulationof the �nite element given previously. However, thecomputational results presented here would be quan-titatively the same for the revised element. The re-sults of four typical runs are shown in the table belowwhere P gives the number of processors and E indi-cates the number of triangular elements in the �nalsolution mesh. The number of vortices in each sampleare 32, 48, 64, and 72 for 16, 32, 64, and 128 pro-cessors, respectively. Thus, the problem size increasesin proportion to the number of processors used. Theamount of time required for re�nement and partition-ing is given as a percentage of total solution time.These operations require less than one percent of theexecution time in all cases, and the solution of thelinear systems dominates the cost of the calculation.Percent Percent PercentP E Re�ne Partition SolutionTime Time Time16 30484 .229 .193 69.532 48416 .091 .117 86.364 111660 .087 .167 88.8128 196494 .181 .452 86.0Statistics on the partitions generated by the newgeometric partitioning algorithm, URB, are given inthe following table. The average aspect ratio for thepartitions is less than two in all cases, and the max-imum aspect ratio is less than 3.6. These result in apartition quotient graph whose average degree is be-tween �ve and six, which corresponds to an averageof �ve to six messages sent per processor to transfernearest neighbor information. Finally, to estimate theamount of data that must be transferred between pro-cessors, we consider the percentage of edges that cross7



partition boundaries to the total number of edges inthe partition. This number is less than 15 percent inall cases.Avg. Max. Avg. Max. PercentP Graph Graph Aspect Aspect CrossDegree Degree Ratio Ratio Edges16 5.31 7.00 1.47 2.88 6.7232 5.40 8.00 1.89 3.55 8.3264 5.64 8.00 1.34 2.49 10.0128 5.71 9.00 1.81 3.55 13.7The �nal triangular mesh of a 32 vortex problemis shown in Figure 5. Vortex cores are indicated bythe location of the heavily re�ned areas of the mesh.This problem was run on 64 processors of the IntelDELTA, and partitions are indicated by the numberedboxes. The partitions tend to split the vortex coresto evenly distribute grid points and are nearly squarein most cases. As we re�ne the mesh around vortexcores, the fact that the kinetic term is approachingthe asymptotic result from below causes the vortex todrift toward regions containing larger mesh elements.We are currently working to eliminate this problemand are temporarily using Gaussian well pinning sitesto �x vortex position.AcknowledgmentsThis work was supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Con-tract W-31-109-Eng-38.References[1] M. Berger and S. Bokhari. A partitioning strat-egy for nonuniform problems on multiprocessors.IEEE Transactions on Computers, C-36(5):570{580, 1987.[2] Lori A. Freitag, Mark T. Jones, and Paul E. Plass-mann. New advances in the modeling of high-temperature superconductors. In 1994 Interna-tional Simulation Conference, \Grand Challengesin Computer Simulation", La Jolla, California,April 11{15, 1994.[3] J. Garner, M. Spanbauer, R. Benedek, K. Strand-burg, S. Wright, and P. Plassmann. Critical �eldsof Josephson-coupled superconducting multilayers.Physical Review B, 45:7973{7983, April 1992.

Figure 5: Results of a sample containing 32 vorticespinned to a square lattice con�guration on 64 proces-sors of the Intel DELTA[4] Mark T. Jones and Paul E. Plassmann. Par-allel algorithms for the adaptive re�nement andpartitioning of unstructured meshes. In Scal-able High Performance Computing Conference,Knoxville,Tennessee, May 1994.[5] Mark T. Jones and Paul E. Plassmann. Block-Solve v1.0: Scalable library software for the paral-lel solution of sparse linear systems. ANL ReportANL-92/46, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne,Ill., 1992.[6] Mark T. Jones and Paul E. Plassmann. Compu-tation of equilibrium vortex structures for type-IIsuperconductors. The International Journal of Su-percomputer Applications, 7(2), 1993.[7] Alex Pothen, Horst Simon, and Kang-Pu Liou.Partitioning sparse matrices with eigenvectorsof graphs. SIAM Journal on Matrix Analysis,11:430{452, 1990.[8] M. Rivara. Mesh re�nement processes based on thegeneralized bisection of simplices. SIAM Journalon Numerical Analysis, 21:604{613, 1984.[9] I. Rosenberg and F. Stenger. A lower bound onthe angles of triangles constructed by bisectingthe longest side. Mathematics of Computation,29:390{395, 1975.8


